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Summary

The liver enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), which are responsible
for the oxidative metabolism of ethanol, are polymorphic in humans. An allele encoding an inactive form
of the mitochondrial ALDH2 is known to reduce the likelihood of alcoholism in Japanese. We hypothesized
that the polymorphisms of both ALDH and ADH modify the predisposition to development of alcoholism.
Therefore, we determined the genotypes of the ADH2, ADH3, and ALDH2 loci of alcoholic and nonalcoholic
Chinese men living in Taiwan, using leukocyte DNA amplified by the PCR and allele-specific oligonucleo-
tides. The alcoholics had significantly lower frequencies of the ADH2*2, ADH3*1, and ALDH2*2 alleles
than did the nonalcoholics, suggesting that genetic variation in both ADH and ALDH, by modulating the
rate of metabolism of ethanol and acetaldehyde, influences drinking behavior and the risk of developing
alcoholism.

Introduction

Most ethanol elimination occurs by oxidation to acet-
aldehyde and acetate, catalyzed principally by alcohol
dehydrogenase (ADH) and aldehyde dehydrogenase
(ALDH). There are multiple isozymes of ADH and
ALDH in human liver (Bosron and Li 1986; Smith
1986). The ADHs primarily involved in hepatic etha-
nol metabolism are the homo- and heterodimeric iso-
zymes whose subunits are encoded by the ADH1,
ADH2, and ADH3 genes (Bosron and Li 1986; Smith
1986) closely linked on chromosome 4 (Smith 1986;
Tsukahara and Yoshida 1989; Yasunami et al. 1990).
Polymorphic alleles at the ADH2 (0i-subunit) and
ADH3 (y-subunit) loci encode isozymes that differ
strikingly in catalytic properties (Bosron and Li 1986).
These differences are thought to underlie a part of the
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threefold variation in alcohol elimination rates among
individuals (Bennion and Li 1976; Wagner et al.
1976), of which 50% is thought to be genetic in origin
(Kopun and Propping 1977; Martin et al. 1985). Oxi-
dation of acetaldehyde to acetate is believed to be cata-
lyzed primarily byALDH2, the low-Km form ofALDH
in mitochondria (Smith 1986). The gene for this ho-
motetrameric enzyme is situated on chromosome 12
(Hsu et al. 1986). A point mutation in the ALDH2
gene produces a deficiency in ALDH2 activity (Yoshi-
da et al. 1984; Hsu et al. 1988). The mutant allele
ALDH2 *2 is dominant over the normal ALDH2 *1
allele; persons both homozygous and heterozygous for
ALDH2 *2 lack detectable ALDH2 activity in liver
(Crabb et al. 1989; Goedde et al. 1989). ALDH2 defi-
ciency is relatively common among Asians (Goedde et
al. 1979; Harada et al. 1980; Teng 1981; Smith
1986). It is associated with facial flushing and other
unpleasant symptoms, such as light-headedness, pal-
pitations, and nausea, when alcohol is consumed
(Wolff 1972). This alcohol-induced flush reaction is
very similar to the aversive reaction caused by alcohol
ingestion in patients being treated with the ALDH in-
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hibitor disulfiram (Ritchie 1980) and is associated
with elevated levels of blood acetaldehyde (Mizoi et
al. 1979, 1985; Tsukamoto et al. 1989). The ALDH2-
deficient phenotype is much less common in Japanese
alcoholics (Harada et al. 1982, 1983, 1985; Yoshi-
hara et al. 1983) than in the Japanese population in
general.
ALDH2 deficiency presumably lowers the risk of

alcoholism as a result of slow acetaldehyde removal.
Since differences in ADH activity can affect the rate
of acetaldehyde production, we hypothesized that the
frequency of ADH2 and ADH3 alleles will also be
different in alcoholics and nonalcoholics.

Material and Methods

Chinese alcoholic subjects, alcohol dependent by
DSM-III criteria (American Psychiatric Association
1980), were male patients from the Tri-Service Gen-
eral Hospital in Taipei. The nonalcoholic Chinese
subjects were males from among the students, physi-
cians, and laboratory staff of the National Defense
Medical Center. Informed consent was obtained, and
blood was drawn from each subject. Genomic DNA
was prepared (Madisen et al. 1987), and portions of
exons 3 and 9 of the ADH2 gene and of exon 8 of the
ADH3 gene were amplified by a minor modification
of the PCR method described by Xu et al. (1988),
which allowed amplification of all three exons in a
single reaction. Exon 12 of the ALDH2 gene was am-
plified by using PCR as reported by Crabb et al.
(1989). ADH alleles were distinguished by using
allele-specific oligonucleotides (Xu et al. 1988) as
probes to hybridize amplified DNA fixed to nitrocellu-
lose. ALDH alleles were also distinguished by allele-
specific oligonucleotide probes (Crabb et al. 1989) by
using buffers containing tetramethylammonium chlo-
ride (DiLella and Woo 1987).

Differences in genotypes and allele frequencies were
tested for significance by using the x2 test. Calculations
were carried out using Statview I" on a Macintosh
computer.

Results

The genotypes at the ADH2, ADH3, and ALDH2
loci were determined by means of allele-specific oligo-
nucleotide hybridization after amplifying the relevant
segments of the genes by the PCR (Xu et al. 1988;
Crabb et al. 1989). The ADH2 and ADH3 allele fre-
quencies in the nonalcoholic group agreed with the

isozyme patterns in Chinese from Malaysia, which
were determined from lung specimens for ADH2 (Lee
et al. 1989) and from stomach tissue for ADH3 (Teng
et al. 1979). The ALDH2 allele frequencies were simi-
lar to those reported to occur among the Japanese (Shi-
buya and Yoshida 1988).
There were striking differences between the alcohol-

ics and the nonalcoholics, in both the genotype and
allele frequencies, at all three loci examined (table 1).
The ADH2 *2, ADH3 *1, and ALDH2 *2 alleles were
all significantly less frequent among alcoholics than
among nonalcoholics (P < .005 for each allele).
The ALDH2 *2 allele is dominant: both homozy-

gotes and heterozygotes are phenotypically ALDH2
deficient (Crabb et al. 1989; Goedde et al. 1989).
There is a significant difference (P < .0001) between
alcoholics and nonalcoholics in the predicted ALDH2
phenotype frequencies: 48% of the nonalcoholics but
only 12% ofthe alcoholics have at least oneALDH2 *2
allele and are, therefore, predicted to be deficient in
ALDH2 activity. This agrees well with the frequency
of ALDH2 deficiency in other Asian groups (Shibuya
and Yoshida 1988; Goedde et al. 1989).
To determine whether the effects of the ADH2 and

ADH3 genotypes were independent of the ALDH2
genotype, the subgroups containing individuals ho-
mozygous for theALDH2 * 1 allele were compared (ta-
ble 2). All these individuals are predicted to have
normal ALDH2 activity. Among these subjects, the
differences between alcoholics and nonalcoholics in
the frequencies of both ADH2 *2 and ADH3 *1 alleles
remained significant (P < .03).

Discussion

The present paper is the first report of a significant
difference in ADH2 and ADH3 genotypes between
alcoholics and nonalcoholics. Until now, the defi-
ciency of mitochondrial ALDH2 was the only defined
genetic factor known to affect the risk of developing
alcoholism (Harada et al. 1982). A report of an allelic
association of the human dopamine D2 receptor gene
with alcoholism appeared recently (Blum et al. 1990).
Although this dopamine receptor subtype has been
implicated in mediating reward in the limbic circuitry
of brain (Koob and Bloom 1988), the functional sig-
nificance of the allelic difference, if confirmed, is un-
known.

Alcoholics have significantly lower frequencies of
both ADH2 *2 and ADH3 *1 alleles than do nonalco-
holics from the same population in Taiwan (table 1).
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Table I

ADH and ALDH: Genotype Frequencies and Allele Frequencies

GENOTYPE FREQUENCYb ALLELE FREQUENCY

GROUP (Na) ADH2 -1/-1 ADH2*1/*2 ADH2*2/*2 ADH2* 1 ADH2*2

Nonalcoholics (47) ....... .06 .40 .53 .27 .73
Alocholics (49) ............. .37' .31' .33' S2d .48d

GENOTYPE FREQUENCYb ALLELE FREQUENCY

ADH3*1/:1 ADH3*1/*2 ADH3*2/12 ADH3*1 ADH3*2

Nonalcoholics (47) ....... .89 .11 .00 .9S .05
Alcoholics (49) ............. .61d .33d .06d .78d .22d

GENOTYPE FREQUENCYb ALLELE FREQUENCY

ALDH2*1/*1 ALDH2 1/P2 ALDH2 *2/1-2 ALDH2 * 1 ALDH2 *2

Nonalcoholics (50) 5....... 2 .36 .12 .70 .30
Alcoholics (50) ............. .88d . d .od .94d .06d

a Number of individuals in group. Note that some exons did not amplify well or gave ambiguous results; thus some individuals were
excluded.

b Fraction of group with each genotype; because of rounding errors, some groups' frequencies do not sum to 1.00.
c Alcoholics are significantly different from nonalcoholics (P < .002). The ADH2 genotype distribution among alcoholics did not fit the

Hardy-Weinberg equilibrium; all other genotype distributions did.
d Alcoholics are significantly different from nonalcoholics (P < .005).

This difference is independent of the ALDH2 geno-

type, as demonstrated by comparison of the groups

homozygous for the ALDH2 -1 allele (table 2). This
indicates that the ADH2 and ADH3 alleles affect the
propensity for alcoholism. ADH2 and ADH3 are

closely linked on chromosome 4 (Smith 1986; Tsuka-
hara and Yoshida 1989; Yasunami et al. 1990).
Among the alcoholics homozygous for ADH2 -2, the

ADH3 '1 allele frequency is not significantly different
than that among the total population of nonalcohol-
ics. Among the alcoholics homozygous for ADH2 -1,
the ADH3 2 allele frequency is significantly higher
(P < .001) than that in the nonalcoholic population.
Thus, theADH3 *2 allele appears to be accompanying
the ADH2 *1 allele. A smaller study that compared
ADH2 genotypes in nonalcoholics with those in Japa-

Table 2

ALH and ALDH: Genotype Frequencies and Allele Frequencies among Individuals
Homozygous for ALDH2*1

GENOTYPE FREQUENCYb ALLELE FREQUENCY

GROUP (Na) ADH2 1/-1 ADH2*1/-2 ADH2.*212 ADH2*1 ADH2*2

Nonalcoholics (25) ....... .08c .48c .44c .32c .68c
Alcoholics (43) ............. .37d .28d .35d .5 ld .49d

GENOTYPE FREQUENCYb ALLELE FREQUENCY

ADH3 '1*- ADH3 1/ *2 ADH3 *2/*2 ADH3 -1 ADH3 2

Nonalcoholics (25) ....... .84c .16c .OOC .92c .08c
Alcoholics (43)............ .58d .35d .07d .76d .24d

a Number of individuals in group.
b Fraction of group with each genotype.
c Nonalcoholics homozygous for ALDH2 -1 were not significantly different from nonalcoholics who have an ALDH2 *2 allele.
d Alcoholics are significantly different from nonalcoholics (P < .03).
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nese patients with alcoholic liver disease showed no
difference in ADH2 allele frequencies (Shibuya and
Yoshida 1988). Because only 10%-16% of alcoholics
develop liver disease (Klatskin 1961; Sorensen et al.
1984), they may not be genotypically representative
of the alcoholic population in general.
Our study also demonstrates a difference inALDH2

genotype between alcoholics and nonalcoholics
among the Chinese men in Taiwan. The ALDH2 *2
allele frequency and theALDH2 *2 *2 andALDH2 *1/
*2 genotypes that predict phenotypic ALDH2 defi-
ciency are significantly lower in the Chinese alcoholic
group than in the nonalcoholics (table 1). Our findings
for the Chinese are consistent with reports of lower
frequencies ofALDH2 deficiency (Harada et al. 1982,
1983, 1985; Yoshihara et al. 1983) and of a lower
frequency of the ALDH2 *2 allele (Shibuya and Yo-
shida 1988) in Japanese alcoholics, as compared with
nonalcoholics.

All the ADH2 and ALDH2 alleles found to be at
lower frequencies in alcoholics produce isozymes that
are predicted to elevate acetaldehyde levels at least
transiently. The 1212 isozyme encoded by ADH2*2
has a 40-fold higher Vmax than does the l1dl isozyme
encoded by ADH2 *1 (Bosron and Li 1986). Under
predicted physiologic conditions, 1212 enzymes oxi-
dize ethanol 20-fold faster than do Illl enzymes (Bos-
ron and Li 1988). The yTyi isozyme, encoded by
ADH3 *1, has a Vrnax about twice that of Y2Y2, encoded
by ADH3 *2. The heterodimericADH isozymes (e.g.,
13jy1) display kinetic properties intermediate between
the corresponding homodimers. Individuals possess-
ing the ADH2 *2 and ADH3 *1 alleles should, there-
fore, generate acetaldehyde more rapidly after etha-
nol consumption than do individuals with only the
ADH2 *1 and ADH3 *2 alleles. A study of eight Japa-
nese men who flushed on consumption of alcohol and
of six who did not do so found that theADH2 *1 allele
was less frequent among flushers (.06) than among
nonflushers (.25). Although the sample size was so
small that the difference was not statistically signifi-
cant (Shibuya et al. 1989), the result is consistent with
our hypothesis. As with ALDH2 deficiency, which
slows the elimination of acetaldehyde, higher acetal-
dehyde levels generated by the more active ADH iso-
zymes should deter heavy drinking. Since the kinetic
differences among the ADH2-encoded 13 isozymes are
much more striking than those between the ADH3-
encoded y isozymes, we expect that the differences
arising from the ADH2 alleles play the larger role in
affecting the risk for alcoholism.

The simplest explanation of the significantly lower
frequency of ADH2 *2, ADH3 : 1, and ALDH2*2 a-

leles among alcoholic men in Taiwan is that each can
produce higher transient levels of acetaldehyde,
through either faster production or slower removal,
and that even transient elevation of acetaldehyde may
trigger aversive reactions. These aversive reactions
may make people with these alleles less likely to be-
come alcoholics. This extends the earlier hypothesis
explaining the relatively low frequency of alcoholics
with ALDH2 deficiency (Goedde et al. 1979; Teng
1981; Harada et al. 1982) to a mechanism for the
effects of the ADH genes.
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